Phylogenetic analysis of the subfamily Colinae (Neogastropoda: Buccinidae) based on morphological characters

Alisa R. Kosyan
Yuri I. Kantor
A.N. Scvertsov Institute of Ecology and Evolution
Russian Academy of Sciences
33 Leninski Prospekt
Moscow 119071, RUSSIA
kosalisa@rambler.ru

Abstract

Colinae Gray, 1857, the most abundant and diverse subfamily of whelks in the northwestern Pacific and Far-Eastern Seas of Russia, includes several conchologically similar genera or subgenera of unclear status and composition. Based on morphological and anatomical studies of 38 species attributed to the genera Colus Röding, 1799, Plicifusus Dall, 1902, Latisipho Dall, 1916, Aulacofusus Dall, 1918, Retifusus Dall, 1916, Retimohnia McLean, 1995, and Pararctifusus Kosuge, 1967, a partial generic revision and phylogenetic analysis based on 34 characters is produced. The resulting majority rule consensus tree well resolves the genera Plicifusus, Retifusus, Pararetifusus, and Anlacofusus. The genus Retimohmia appears to be a junior synonym of the genus Retifusus. Species of the heterogeneous genus Colus included in this study do not form a clade, indicating that this genus, as presently understood, is paraphyletic. Our results demonstrate the importance and utility of anatomical characters for resolving the systematies of the extremely diverse and variable family Buccinidae.

Additional keyuords: Taxonomy, phylogeny, cladistics, northwestern Pacific

INTRODUCTION

Although the number of papers dedicated to the molecular phylogeny of neogastropods continues to increase, there is no parallel increase in data on their morphology and anatomy. This is especially true for the Buccinidae, a large and evolutionarily suecessful family of predatory marine gastropods that are widespread in polar, temperate, and tropical waters of the World Ocean, and which have signifieant commereial value. In the northwestern Pacific, Buccinidae is one of the dominant families, and in waters of the Russian Far-East, it is the most abundant and diverse family, eomprising more than 30% of the total number of gastropod speeies (Kantor and Sysoev, 2006). Six bueeinid subfamilies are present in the northwestern Pacifie: Buccininae Rafinesque, 1815; Colinae Gray, 1857;

Beringiinae Golikov and Starohogatov, 1975; Aneistrolepidinae Habe and Sato, 1973; Parancistrolepidinae Habe, 1972; and Volutopsiinae Habe and Sato, 1973. The subfamily Colinae (previously better known under the name Neptumeinae Stimpson, 1865) is the most diverse with respeet to the number of genera and species in the northwestem Pacific (Kantor and Sysoev, 2005, 2006). It includes 16 of the 34 genera and 116 of the 263 species of Buecinidae recorded in the fauna of Russia.

The best known representative of this subfamily is the diverse genus Neptunea, whieh has had two recent revisions (Golikov, 1963; Fraussen and Terryn, 2007). Other genera, with species that do not grow to commercial size, have not attracted sufficient attention of malacologists. Among them are several conchologically similar genera with unclear taxonomic status and species composition, ineluding: Colus Röding, 1799, Latisipho Dall, 1916, Plicifusus Dall, 1902, Aulacofusus Dall, 1918, Retifusus Dall, 1916, Pararetifusus Kosuge, 1967, and Retimohnia McLean, 1995.

Species and genera within Bueeinidae have generally been diagnosed based primarily on conchological eharacters, with radular morphology contributing only oecasionally to their taxonomy. Anatomical characters have, thus far, hardly been used for these purposes.

The aim of this publication is to clarify the status and composition of the genera Colus Rörling, 1799, Plicifusus Dall, 1902, Latisipho Dall, 1916, Anlacofusus Dall, 1918, Retifusus Dall, 1916, Retimolmia McLean, 1995, and Pararctifusus Kosuge, 1967, based on conchological, anatomieal and radular characters, as well as to evaluate the utility of morphologieal characters for resolving the taxonomy of Colinae.

MATERIALS AND METIIODS

We dissected and analyzed the anatomy of 38 speeies of Colinac, defining 34 characters coded as 82 character states that were used to perform the phylogenetie analyses of these taxa (Table 1, Appendix 1). Of these, 7 eharacters described shell structure, 5 characters the
soft body and the mantle, 5 characters the reproductive systems, 12 characters the digestive system, and 5 characters the structure of the radula. The material for the study was obtained from the Zoological Institute (Saint Petersburg, Russia), the P. P. Shirshov Institute of Oceanology of Russian Academy of Sciences (Moscow), and the Zoological Museum of Moscow State University. In total, nearly 200 specimens were dissected. While processing this material, standard zoological methods were used, such as manual dissection, histology and scanning electron microscopy for the examination of radulae. Phylogenetic analyses were run using Paup*4 (Swofford, 1998).

RESULTS

Brief Descriptions of the Taxonomically Informatie Morphological Characters of the Studied Genert: The gross anatomy of Colinae is typical of the Buccinidae in general features (Figures 1-2). The operculum may have a terminal (Latisipho, Colus, Aulacofusus; Figures 1, 26), or subspiral nucleus (Pararetifusus; Figure 4). The mantle cavity spans approximately one whorl of the body (Figure 3). The ctenidium (ct), osphradium (os) and, in fcmales, the capsule gland (cg) can be observed by partial transparency of the mantle. Relative sizes of the ctenidium and osphradium vary in different species.

Penis morphology was used successfully by Golikov (1963, 1980) for taxonomic studies of the genera Neptunea and Buccinum; however, in our study, the structure of the distal section of penis varied very little. In Latisipho, Plicifusus, two species of Colus, and several Retifusus species, the seminal duct opens at the tip of a large, cone-shaped papilla (Figures 6, 8-9, sp) that is encircled by a fold of skin (cf). In the remaining Retifusus species, the seminal papilla is very small and becomes narrower towards its tip (Figure 10, sp). In the genus Pararetifusus, the seminal papilla is absent, with the male orifice situated terminally at the tapering tip of the penis (Figure 5). The structure of the pallial gonoduct in females appeared to be even more conservative in the genera studied. In the majority of species we examined, the vagina is strongly developed (Figure 11), occupying a ventral position on the capsule gland. Only in the genus Pararetifusus it is situated terminally.

The mouth opening is situated at the tip of a more or less elongated proboscis (Figure 12, mo). While contracted, the proboscis is situated within the rhynchodeum (Figure 12, rd). The anterior section of the rhynchodeum is immovable and attached to the body haemocoel walls by multiple tensor muscles. The posterior section of the rhynchodeum is capable of being everted. The proboscis is retracted by retractor muscles attached to the rhynchodeum walls (Figure 12-15, prr). The longest proboscises in the contracted state were found in Aulacofusus and in some species of Cohus, where they are folded within the rhynchodeum (Figure 14). In other genera (Plicifusus, Retifusus, and Latisipho), the proboscis remains straight within the rhynchodeum (Figures 12-13), and elongates mostly due to eversion of the posterior, movable section.

The proboscis wall is formed of an epithelium, one or two layers of circular muscle fibers, and two layers of longitudinal muscle fibers. The sequence of layers in the majority of studied genera (Aulacofusus, Latisipho, Retifusus) is, (from outer to inner surfaces): epithelium, circular muscle layer, longitudinal muscle layer, circular muscle layer, and an innermost longitudinal muscle layer (Figures 18-20). In two studied species of Plicifusus, the sequence of layers differed, consisting of: epithelium, longitudinal muscle layer, circular muscle layer, and longitudinal muscle layer in P. luastarius (Figure 24), with the addition of an inmermost, second layer of circular muscle fibers in P. riyssus.

Within the proboscis is the buccal mass with radula. Comparative lengths of the buccal mass varied among taxa and have taxonomic significance. Each row of the radula (Figures 36-41) consists of two lateral tecth and one central tooth, each normally bearing 3 cusps. Although the teeth are similar in shape, the finer details are specific for genera (see below in the discussion).

The anterior esophagus opens into a large (Retifusus, Pararetifusus) or medium-sized (Latisipho, Plicifusus, Colus, Anlacofusus) valve of Leiblein (Figure 12, v). The gland of Leiblein is present in all studied species (Figures 12-13, gl). Salivary glands differ in shape and in size (Figures 12-14, sg), being largest in Retifusus and Aulacofusus. The salivary ducts leave the inner side of each gland and run along the esophagus to their openings into the posterior part of the buccal cavity. The diameter and the structure of the wall of the ducts vary among different genera. In Latisipho, Plicifusus, and Colus, the ducts are thin and coiled (Figure 13, sd), while in Aulacofusus, Retifusus, and Pararetifusus, they are thick, sometimes with swellings in a form of a sac (salivary sacs) (Figure 15, ss). In Aulacofusus, the walls of salivary ducts have an addlitional layer of longitudinal mucles (Figure 21, lm). The posterior esophagus opens into the stomach. The structure of the stomach is generally of the same type in the majority of the species studied, but the length of the posterior mixing area can differ among genera (Figure 16-17, pma).

Philogenetic Analyses: Volutopsius norvegicus (Gmelin, 1791) (Buccinidae: Volutopsiinae) and Ancistrolepis okhotensis Dall, 1925 (Buccinidae: Ancistrolepidinae), whose anatomy is known (Kantor, 1982, 1988), were used as outgroups. A heuristic search yielded 2624 trees, each 147 steps in length. Consistency index (CI) = 0.3197 , homoplasy index $(\mathrm{HI})=0.6803$, retention index $($ RI $)=0.6942$. Figurc 25 shows the 50% majority-rule consensus tree.

Several clades can be distinguished within the ingroup (Clades 1 to 6, Figure 25).
Clade 1, which is supported in 93 percent of trees, corresponds to the genus Plicifusus, and contains 12 species, including the type species of Plicifusus. At the moment, we prefer to treat it as a monophyletic genus pending examinations of additional species.

Figures 1-11. Anatomy, 1-2. Plicifusus bambusus. 3. Mantle of Plicifusus hastarius. 4. Operculum of Pararetifusus kantori. 5. Penis of Pararetifusus Kantori, 6, 8. Penis of Latisipho hallii, ventral view. 7. Frontal-dorsal view of the soft horly of Colus minor, with mantle removed. 9. Upper section of penis of Colus minor. 10. Penis of Retifusus jessocnsis. 11. Pallial female reproductive system of Plicifusus rhyssus, eapsule gland opened dorsally. Abbreviations: be, bursa copulatrix; cf, circular fold of skin around the seminal papilla, eg, capsule gland; $\mathbf{c m l}$, columellar miscle: $\mathbf{c t}$, ctenidim, dg, digestive gland; eye, eye; fo, female orifice, hal, head; hg, hypobranchial gland; kd, kidney; m, mantle edge; op, operculum; os, osphradium; p, penis; prp, propodimm; prpg, propodial groove, re, rectum; s, siphon; so, male orifice; sp, seminal papilla; va, vagina

Plicifusus Dall, 1902
Tritonofusus (Plicifusus) Dall, 1902: 523.
Type Species: Fusus kroyeri Möller, 1842, by original designation.

Diagnosis: The genus is characterized by an elongated, small to medium-sized fusiform shell with welldeveloped axial ribs and numerous spiral cords (from 30 to 60 cords on pemultimate whorl) that cover the entire shell surface (Figures 31, 33). The central tooth of the radula is large and broad, and has two to four

(usually three) sharp cusps (Figure 36). The lateral teeth usually have threc or four cusps, with the central cusps always smaller than the lateral ones. The salivary ducts are very thin and convoluted. The stomach is large, as compared to the proboscis, and narrow, with a small posterior mixing area.

Remarks: Plieifusus was described by Dall (1902) as subgenus of Tritonofusus Mörch, 1857, which is an objective synonym of Colus Röding, 1799, since it is based on the same type species. Plicifusus has been treated as a distinct genus by the majority of subsequent authors.

Genus Composition: The majority of the included species were described within this genus [or attributed to the subgenus Tritonofusus (Plieifusus)]. Quasisipho torquatus Petrov, 1982, is the type species of the monotypic genus Quasisipho Petrov, 1982, from the upper Pliocene-lower Pleistocene of eastern Kamchatka. This specics survives in the Recent Cama, and its anatomy confirms that the type species belongs within Plieifusus. Thus Quasisipho becomes junior subjective synonym of Plicifusus. Some species were originally described or attributed to Retifusus [e.g., Plieifusus (Retifusus) scissuratus Dall, 1918]. Tritonofusus (Plieifusus) rhyssus Dall, 1907 was placed in the genus Helieofusus Dall, 1916 (type species by original designation Tritonofusus (Plicifusus) aurantius var. latieordatus Dall, 1907) by many Russian authors (e.g., Kantor and Sysoev, 2005, 2006).

The results of our study place the following species within the genus Plieifusus:

Plicifusus kroeyeri (Møller, 1842) $[=$ Fusus arcticus Philippi, 1850]
Plieifusus plieatus (A. Adams, 1863)
Plicifusus scissuratus (Dall, 1918)
Plicifusus croceus (Dall, 1907)
Plicifusus elaeodes (Dall, 1907)
Plieifusus rhyssus (Dall, 1907) [= Plicifusus (Latifusus) wakasamus Dall, 1918; Tritonofusus (Plicifusus) aurantius Dall, 1907; Plicifusus (Aulaeofusus) rhyssoides Dall, 1918]
Plieifusus hastarius Tiba, 1980
Plieifusus bambusus Tiba, 1980
Plieifusus obtusatus Golikov in Golikov and Scarlato, 1985
Plicifusus olivaeeus (Aurivillius, 1885) [= Plieifusus. (Retifusus) ineisus Dall, 1919]
Plieifusus oeeanodromae (Dall, 1919)
Plieifusus torquatus (Petrov, 1952)

A second, well defined clade with 100% bootstrap support inchucles 20 species in our study, and is composed of several wall supported subclades (clades 2, 3, 4, 5) and two umresolved species.
Clade 2, although not supported in all trees, contains three northern Atlantic specics of the genus Colus Röding, 1798 (Figure 26), including C. islandieus, the type species. The other two species, often attributed to Colus: C. minor (Dall, 1925) and C. kujiams Tiba, 1973, do not emerge as members of this clade. These results reflect the high heterogeneity of Colus, which is widely distributed in the Atlantic and Arctic Oceans and in the northem Pacific. Many more species need to be studied in detail before the taxonomy of Cohus is clearly understood.

Clade 3 inchudes three species belonging to the genus Pararetifusus, including its type species.

Pararetifusus Kosuge, 1967
Retifusus (Pararctifusus) Kosuge, 1967: 62.
Type Species: "Phymorhymehus?" tenuis Okutani, 1966 (by original designation).
Diagnosis: The genus is characterized by a small shell with a relatively high last whorl. The spiral sculpture consists of a few elevated, sharp or rounded ribs; axial folds are absent (Figures 28, 30). The radula is similar to that of Retifusus roseus, R. latieingulatus, R. similis, R. iturupus, and R. attenuatus (Figure 3S) (see below for description).
Remarks: The type species was originally placed in Phymorhynehus (Conoidea), but examination of the radular and morphological characters undoubtedly placed it within Buccinidae (Kosuge, 1967).

Genus Composition: Very few species have been placed in Pararetifusus. In addition to the species studied here (below) only one, P. dedonderi Fraussen and Hadom, 2001, from Philippines was tentatively attributed to Pararetifusus but later excluded by Kosyan (2006a).

Pararetifusus temuis (Okutani, 1966)
Pararetifusus kantori Kosyan, 2006
Pararetifusus kosugei Kosyan, 2006
The genus was proposed as a subgenus of Retifusus and is close to it in radular structure and anatomy, but differs in shell sculpture. The spiral cords of Pararetifusus shells are very similar to the cords of Aulaeofusus

Figures 12-17. Anatomy. 12. Right lateral view of the foregnt of Plicifusus hastarins. 13. Left lateral view of the foregut of Plicifusus huyssus. 14. Right lateral view of the foregut of Aulacofusus herendeeni. 15. Dorsally opened proboscis of Retifusus rosens. 16. Opened stomach of Aulacofusus periscelidus. 17. Opened stomach of Plicifusus hastarins. Abbreviations: adg, opening of anterior duct of digestive gland; agl, ampulla of gland of Leiblein; aoc, anterior esophagus; bm, buccal mass; gl, gland of Leiblein; int, intestine; mo, mouth opening; n, nerves; ns, nerve ring; odr, odontophore retractors; oco, oesophageal opening; pdg, opening of posterior duct of digestive gland; pma, posterior miving area; poe, posterior esophagus; pr, proboscis; pry, proboscis retractors; \mathbf{r}, radula; $\mathbf{r d}$, rhynchodem; sd, salivary duct; $\mathbf{s g}$, salivary gland; $\mathbf{t 1 1}$, typhlosole; vI, valve of Leiblein

Figure 25. Fifty-percent majority-rule consensus tree obtained from 2624 trees, each 147 steps in length.
periseelidus; however, the anatomy of Pararetifusus differs considerably.
Clade 4 , which is conchologically most heterogenous, eontains 9 species previously classified within the genera Retifusus, Mohnia, Retimohmia, and Plieifusus. The oldest valid name for this group is Retifusus.

Retifusurs Dall, 1916
Plicifusus (Retifusus) Dall, 1916: 8 .
Type Species: Tritonium (Fusus) jessoeusis Schrenek, 1863 (by original designation).

Diagnosis: The genus is charaeterized by a small (on average $<2.5 \mathrm{~cm}$) shell, which has an axial and spiral seulpture similar to that of Plicifusus (Figures 32, 34); however, the radula has a different morphology (Figure 37,38). The lateral teeth usually have three or four long
eusps of nearly equal length. The central teeth may be of two types. R. jessoensis, R. virens, R. yanamii, and R. friclei have five or six sharp eusps inereasing in length from the periphery to the center (Figure 37). The central teeth of R. roseus, R. laticingulatus, R. similis, R. iturupus, and R. attemuatus have only three sharp cusps, and the central eusp is usually longer than the lateral cusps (Figure 38). The salivary ducts are very thick and straight. The stomach is large compared to the proboseis, narrow, and has a small posterior mixing area.

Remarks: McLean (1995) established the genus Retimolntia (type species by original designation, Moluia frielei (Dall, 1891) to ineorporate several speeies previously assigned to the genus Molmia Friele, 1878. Our analysis demonstrates that M. frielei belongs to the same elade and is morphologically rather similar to R. jessoensis, the type species of Retifusus. Thus, Retimohnia is a junior subjective synonym of Retifusus. Retifusus is often considered to be a subgenus of Plieifusus (e.g., Higo et al., 1999) but our analysis demonstrates that it is not elosely related to the latter:

Genus Composition: We include the following speeies in Retifusus, although some others may belong to this group as well:
Retifusus jessoensis (Sehrenek, 1863) [= Fusus (Siplo?) manchurieus E. A. Smith, 1875; Chrysodomus brumneus Dall, 1877; Molmia oklotskana Tiba, 1981 - synonymy based on examination of the type specimens and anatomieal studies .]
Retifusus frielei (Dall, 1891)
Retifusus virens (Dall, 1877)
Retifusus yauamii (Yokoyama, 1926)
Retifusus laticingulatus Golikov et Gulbin, 1977
Retifusus roseus (Dall, 1877) [= Retifusus semiplieatus Golikov in Golikov and Scarlato, 1985; Plicifusus parvus Tiba, 1980; Plieifusus saginatus Tiba, 1980 - synonymy based on examination of the type speeimens and anatomical studies].
Retifusus similis (Golikov et Gulbin, 1977)
Retifusus attenuatus (Golikov et Gulbin, 1977)
Retifusus iturupus (Golikov et Sirenko, 1998)
Retifusus differs from Plicifusus in radular morphology; from Molmia in the form of its opereulum, the presence of axial sculpture and in radular morphology; from Colus, Aulaeofusus, and Latisipho in axial sculpture and radular morphology.

Clade 5 includes representatives of Aulaeofusus that are rather uniform conchologieally and morphologieally.

Figures 18-24. Anatomy. 18. Transverse section of the proboscis wall of Aulacofusus hereudeeni. 19, 20. Transverse section of the proboscis wall of Aulacofusus brevicauda. 21. Salivary ducts of A. brevicauda. 22. Transverse section of the proboscis wall of Retifusus jessoensis. 23. Salivary duct of R. jessoensis. 24. Transverse section of the proboscis wall of Plicifusus luastarius. Abbreviations: aoe, anterior csophagus; cm, circular muscles; ent, connective tissue; ert, odontophoral cartilage; ep, cpithelium; lm, longitudinal muscles; \mathbf{n}, nerves; \mathbf{r}, radula; $\mathbf{s d}$, salivary duct.

Figures 26-35. Shells. 26. Colus islandicus. 27. Latisipho hallii. 28. Pararetifusus tenuis. 29. Latisipho hypolispus. 30. Pararetifusus kantori. 31. Plicifusus kroeyeri. 32. Retifusus attenuatus. 33. Plicifusus rhyssus. 34. Retifusus jessoensis. 35. Aulacofusus brevicauda.

Aulacofusus Dall, 1918

Aulacofusus Dall, 1918: 217.
Type Species: Fusus spit_bergensis Reeve, 1855 (by original designation).

Diagnosis: The group is eharacterized by an elongated, medium-sized fusiform shell seulptured with wide spiral cords (from 6 to 16 cords on the penultimate whorl) (Figure 35). The axial sculpture is represented only by incremental growth lines. The radula strueture is in gencral the same as in Plicifusus (Figure 39). The salivary ducts are thick-walled, with an additional external layer of longitudinal muscles (Figurc 21, Im). The stomach is large, as compared to the proboscis,
and narrow, with a very long posterior mixing area (Figure 16, pma).

Remarks: The taxon was proposed as "group of speeies, typified by Fusus spitzbergensis Reeve that has a speeial aspeet due to the short canal and the prominence of the spiral ribs..." Thus, the rank of the taxon was not speeified, but it is obvious, from the context of the deseription, that Dall (1918) eonsidered it even lower than that of a seetion of the genus Colus. Latcr, Dall (1921) treated it as subgenus of Colus, a view that has been followed by most recent authors (e.g., Higo et al., 1999), but not by some Russian researchers (e.g., Golikov and Culbin, 1977; Kantor and Sysoev, 2005, 2006).

Figures 36-41. Radulae. 36. Plicifusus kroeyeri. 37. Retifusus jessoensis. 38. Pararetifusus kantori. 39. Aulacofusus brevicauda. 40. Latisipho hypolispus. 41. Colus islandicus.

Species of Aulacofusus have a considerable conchological similarity to species attributed to the genus Colus, particularly in the shape and sculpture of the shell (Figures 26, 35). Some anatomical characters, such
as the extremely long, coiled proboscis typical of Aulacofusus (Figure 14), are also present in some species of Colus. Nevertheless, the presence of several autapomorphies of Aulacofusus, including stomach structure that is

Table 1. Character coding (see Appendix 1).

unique in the entire subfamily Colinae, and the histological strueture of the wall of the salivary duets, lead us to treat it as a separate genus.

Genus Composition: Many species has been attributed to this group at various times. We include the following examined species in the subgenus:
Aulacofusus brevicauda (Deshayes, 1832) (=Tritomium sehamtarieum Middendorff, 1S 49 ; Neptumea (Sipho) terebralis Gould, 1860)
Aulaeofusus herendeeni (Dall, 1899) (=Colus (Aulacofusus) nobilis Dall, 1919)
Aulacofusus ombronius (Dall, 1919)
Aulaeofusus periscelidus (Dall, 1891)

Clade 6 is the most basal elade in our study, and is supported in only 53% of the trees. It includes three speeies of the genus Neptınea Röding, 1798: Neptımea antiqua (Linnaeus, 1758) (type speeies of the genus by subsequent designation of Sandberger, 1861), N. jagudinae Goryachev and Kantor, 1983, and N. gnlbini Goryaehev and Kantor, 1983. The genus was ineluded in the analysis based on published data (Goryaehev and Kantor, 1983) and its detailed description is beyond the scope of the current paper. Nevertheless, our analyses suggest that the genus in its conventional sense may be paraphyletie.

Both known species previously referred to Latisipho (Kosyan, 2006b) (Figures 27, 29), do not emerge as a
monophyletic group in our study, and their taxonomic position should be reconsidered.

Our study indicates that the anatomical characteristics are important and suitable for differentiating among the genera of Colinae and Buccinidae. Despitc the absence, in many cases, of autapomorphies, many closely related genera may be diagnosed by combinations of characters through the use of phylogenetic techniques.

ACKNOWLEDGMENTS

Many thanks are due to Dr. M. G. Harasewych and Dr. E. Strong for organizing the Neogastropod Symposium during the World Congress of Malacology in Antwerp in 2007.
We are indebted to Dr. B.I. Sirenko and R.A. Kormushkina from the Zoological Institute (Saint Petersburg, Russia), Dr. A. V. Sysoev and Dr. D. L. Ivanov from the Zoological Museum of the Moscow State University (Moscow, Russia), Dr. A. V. Gebruk from the P. P. Shirshov Institute of Oceanology (Moscow, Russia), Dr. D. G. Reid, Dr: J. D. Taylor, A. McLellan, and K. Way from the British Natural History Museum (London, UK) for help during work in the museum collections. We are grateful to Dr. D. O. Alexeev (VNIRO, Moscow, Russia) who placed his personal collection of Buccinidae at our disposal. We also are indebted to the anonymous reviewers for their valuable comments.

LITERATURE CITED

Dall, W. H. 1902. Illustrations and deseriptions of new, unfigured or imperfeetly known shells, chiefly American, in the U.S. National Museum. Proceedings of the United States National Museum 24(1264): 499-566, pls. 27-40.
Dall, W. H. 1918. Notes on Chrysodomus and other mollusks from the North Pacific Ocean. Proceedings of the United States National Museum. 54(2234): 207-234.
Dall, W. H. 1921. Summary of the marine shellbearing mollusks of the northwest coast of America, from San Diego, California, to the Polar Sea, mostly contained in the collection of United States National Museum, with illustrations of hitherto unfigured species. United States National Museum Bulletin 112: 1-217, pls. 1-22.
Fraussen, K. and Y. Terryn. 2007. The family Buccinidae. Genus Neptunea. A Conchological Iconography. Conchbooks, Hackenheim, 166 pp., I54 plates.
Golikov, A. N. 1963. Gastropod molluses of the genus Neptunea Bolten. Fauna of USSR, Mollusks. Lemingrad, Nauka, 5(1): 1-217 [In Russian].
Golikov, A. N. 1980. Molluses Buccininae of the World Ocean. Fauna of USSR, Mollusks. Leningrad, Nauka, 5(2): 1-466 [In Russian].
Golikov, A. N. and V. V. Gulbin. 1977. Prosobranchiate gastropods (Gastropoda, Prosobranchiata) of the shelf of Kurile Islands. II. Ordo Hamiglossa - Homoestropha. In: Fauna of coastal zones of Kurile Islands. Nauka, Moseow, pp. 172-268.

Goryachev, V. N. and Yu. I. Kantor. 1983. Two new NorthernKurile species of the genus Neptunea (Gastropoda, Buccinidac). Zoologicheskii Zhurnal 62(12): 1765-1774 [In Russian].
Higo, S., Callomon, P., and Y. Goto. 1999. Catalogue and bibliography of the Marine shell-bearing Mollusea of Japan. Elle Scientific Publications, Osaka, 749 pp.
Kantor, Yu. I. 1982. Abont the type specics of the genus Volutopsius (Gastropoda, Pectinibranehia). Zoologicheskii Zhurnal 61(6): S43-850 [In Russian].
Kantor, Yu. I. 1988. Gastropod molluses of the subgenus Ancistrolepis (Clinopegma) (Gastropoda, Buccinidae) of the Sea of Okhotsk. Zoologicheskii Zhumal 67(S): 1126-1140 [In Russian].
Kantor, Yu. I. and A.V. Sysoev. 2005. Catalogue of molluses of Russia and adjacent countries, Moscow: KMK Scientific Press Ltd., 1-627.
Kantor, Yu. I. and A.V. Sysoev. 2006. Marine and brackish water Gastropoda of Russia and adjacent countries. KMK Scientific Press Ltd., Moscow, 1-371.
Kosuge, S. 1967. On the transfer of "Phymorhynchus?" tenuis_ Okutani, 1966 to the family Buccinidae. Venus 25: 59-64.
Kosyan, A. R. 2006a. Two new species of the genus Pararetifusus Kosuge, 1967 (Buccinidae: Colinae), with notes on the morphology of Pararetifusus tenuis (Okutani, 1966). Ruthenica 16(1-2):5-15.
Kosyan, A. R. 2006b. Anatomy and taxonomie composition of the genus Latisipho Dall (Gastropoda: Buccinidae) from the Russian waters. Ruthenica, I6 (1-2): 17-42.
McLean, J. H. I995. Four new genera for Northeastern Pacific prosobranch gastropods. The Nautilus 108: 39-41.
Swofford, D.L. 1998. PAUP: Phylogenetic Analysis Using Parsimony and Other Methods, v. 4, Sunderland: Sinaver.

APPENDIX 1. List of characters and character states.

Cephalopodium

1. Operculum: 0 - with terminal nucleus (Figure 1), 1 - with spiral nucleus (Figure 4), 2 - with terminal nucleus displaced to the left.

Mantle
2. Mantle: 0 - square, 1 - length exceeds width.
3. Osphradium: 0 - symmetrical, 1 - asymmetrical.
4. Osphradium: 0 - short ($<1 / 2$ of mantle length), 1 long ($>1 / 2$ of mantle length).
5. Ctenidium: 0 - lamellae of ctenidium wider than lamellae of osphradium, 1 - lamellae of ctenidium of the same width as lamellae of osphradium.

Reproductive System

6. Penis: 0 - with large seminal papilla (Figures 6, 8, 9), 1 - with small papilla (Figure 10), 2 - without papilla (Figure 5).
7. Seminal papilla: 0 - cone-shaped, encircled by fold of skin (Figures 6, 8, 9), 1 - claw-like, 2 - absent.
8. Male genital opening: 0 - not surrounded by tiny papillae, 1 - surrounded by multiple tiny papillae.
9. Vas deferens: 0 - thin, convolnted, not protruding into body haemocoel, 1 - thick, located in body haemocoel.
10. Capsule gland: 0 - with ventrally folded vagina, 1 - vith terminal vagina.

Digestive Sistem

11. Proboscis: 0 - straight (Figures 12-13, pr), 1 folded within rhynchocoel (Figure 14, pr).
12. Rhynchodeum: 0 - thick-walled, everting, l -thin-walled, non-everting.
13. Relative length of buccal mass: 0 - equal in length to contracted proboscis, 1 - half the length of the contracted proboscis, 2 - less than half the length of the contracted proboscis, 3 - longer than the contracted proboscis.
14. Proboscis retractors: 0 - rumning along rhynchodeum and attached to roof and lateral walls of body haemocoel (Figure 12-13, prr), 1 - short, situated at the base of the proboscis and attached to the bottom of body haemocoel (Figure 14, prr).
15. Sequence of layers in the proboscis wall [outer to imner edges]: 0 - epithelium, circular muscles, longitudinal muscles, circular muscles, longitudinal muscles (Figure 19), 1 - epithelium, longitudinal muscles, circular muscles, longitudinal muscles, circular muscles (if present) (Figure 24).
16. Salivary glands: $0-$ small and rounded ($<1 / 3$ of proboscis length) (Figure 12), 1 - long, beanshaped ($>2 / 3$ of proboscis length) (Figures 13, 14).
17. Salivary ducts: 0 - without additional longitudinal muscle layer in the wall (Figures 22, 23), 1 - with external layer of longitudinal muscles in the wall (Figures 20, 21).
18. Salivary ducts: 0 - without salivary sacs (Figures 13, 14), 1 - with salivary sacs (Figure 15).
19. Salivary ducts: 0 - thin, convoluted (Figure 13), 1 — thick, straight (Figures 14, 15).
20. Gland of Leiblein: 0 - well developed, 1 - thin, poorly developed, 2 - absent.
21. Stomach: 0 - with small posterior mixing area (Figure 17), 1 - with very long posterior mixing area (Figure 16), 2 - without posterior mixing area.
22. Stomach: $0-$ large ($>1 / 3$ whorl), $1-$ small ($<1 / 3$ whorl).

Shell
23. Axial ribs: $0-<14$ axial ribs on last whorl, $1->$ 14 ribs on last whorl, 2 - axial ribs absent.
24. Axial ribs: 0 - s-shaped, 1 - straight, 2 - absent.
25. Spiral sculpture: 0 - numerous cords present (>20 on penultimate whorl), 1 - few cords present (<20 on penultimate whorl), 2 - cords absent.
26. Microscopic spiral threads: 0 - present, $1-a b-$ sent.
27. Spiral cords: 0 - absent, 1 - present, low, acute distally, 2 - present, rounded distally, 3 - present, flattened.
28. Ratio, body whorl height / shell height: $0-<0.7 ; 1$ $—>0.71$.
29. Ratio, aperture length / shell length: $0-<0.5 ; 1-$ >0.51.

Radula
30. Central tooth: 0 - with 3 cusps (Figures 36, 38-41), 1 - with multiple cusps, posterior tooth edge rounded (Figure 37), 2 - with multiple cusps, posterior tooth edge nearly straight.
31. Central tooth: 0 - with 3 cusps, all of equal size, 1 - with 3 cusps, medial cusp differing in size from the marginal cusps, 2 - with more or fewer than 3 cusps.
32. Lateral teeth: 0 - with 3 cusps, 1 - with more or fewer than 3 cusps.
33. Lateral teeth: 0 - medial cusps smallest, 1 - all cusps equal in length.
34. Cusps of the central tooth: 0 - do not overlap tooth of following row; 1 - overlap tooth of following row.

